¿Hay algún juego de inteligencia en el que podamos ganarle a las máquinas?

Compartir esta noticia
Estrategia. El juego permite sacar a luz fortalezas y debilidades para crear mejores equipos y potenciar personalidades. (foto: Shutterstock)

TECNOLOGÍA

El próximo 11 de mayo se cumplirán 25 años de un hito en la historia de la invención humana. Ese día, en Nueva York, el programa Deep Blue venció al entonces campeón del mundo de ajedrez, Gary Kasparov, en un duelo a seis partidas. La máquina había demostrado su superioridad en un terreno hasta entonces reservado a sus creadores.

La nueva frontera de la hegemonía humana se situó entonces en el go, un juego milenario originario de China, más complejo, intuitivo y sutil. Los expertos fijaron para 2025 la previsible victoria de la máquina, pero los progresos en inteligencia artificial adelantaron la fecha. En 2016 el programa de Google Alpha Go venció al campeón coreano Lee Sedol, quien tres años después abandonó la competición, aún frustrado por la derrota.

¿Queda algún juego de inteligencia a los que podamos derrotar a las máquinas? El matemático italiano Carlo Frabetti, experto en acertijos y problemas de lógica, considera que las computadoras han vencido definitivamente a los seres humanos en cualquier desafío que pueda reducirse a algoritmos, es decir a un conjunto de reglas definidas, no ambiguas y finitas, como las damas, el ajedrez o el go.

Hay cierto consenso en torno a esta conclusión, pero además en los últimos años las computadoras han ido más allá, venciendo en juegos de información incompleta o en tiempo real como el póquer o algunos videojuegos. El propósito de estos proyectos no ha sido tanto derrotar a los humanos, como entrenar los sistemas de inteligencia artificial en un terreno de juego idóneo y sin riesgos como es el de los juegos.

¿Cómo se han logrado estos avances? Que algunos juegos sean finitos no quiere decir que las máquinas ganen por fuerza bruta. Ni siquiera ellas pueden considerar todas las combinaciones posibles. “El número de partidas de ajedrez diferentes es del orden de los 20 septillones, un número con 41 ceros, mayor que el número de átomos del universo”, cuenta Frabetti. Por eso, los programas de este tipo más sofisticados copian a los humanos para centrarse solo en las opciones verosímiles.

En diciembre de 2018, tras aprender en unas horas a jugar al ajedrez, al shogi (ajedrez japonés) y al go, sabiendo solo las reglas y sin ejemplos de partidas, el programa AlphaZero, que emula las redes neuronales, apalizó no ya a los humanos, sino a las máquinas más potentes del mundo. Su ventaja estaba precisamente en imitar algunas de las cualidades típicamente humanas. “El éxito de AlphaGo y AlphaZero fue incorporar este tema de la intuición, para considerar únicamente los movimientos más razonables”, explica Londres Oriol Vinyals, ingeniero español de Google DeepMind, la división de inteligencia artificial de la tecnológica responsable de estos proyectos. La máquina elige así exclusivamente entre unas decenas de miles de posiciones posibles, frente a las decenas de millones que contemplan sus rivales.

DeepMind fue fundada en 2010 por Demis Hassabis, un investigador en inteligencia artificial fanático de los juegos. De hecho, uno de sus primeros programas aprendió a practicar solo y a ganar a diferentes títulos de la videoconsola de Atari. Pero su propósito último no es derrotar a las personas, sino resolver problemas muy complejos mediante inteligencia artificial y utiliza los juegos como campo de entrenamiento. “Cada uno de estos proyectos producen avances en los componentes del sistema, es como un puzle”, explica Vinyals. De hecho, investigar sobre estos juegos sirvió para que DeepMind impulsara AlphaFold, un sensacional avance científico que predice todas las proteínas que forman un ser humano.

Avance tecnológico

Vinyals cree que el hombre ya no puede derrotar a la máquina en los ”juegos clásicos, por turnos y casi computacionales”. Otros son más complicados para la inteligencia artificial, que precisamente por eso puede seguir aprendiendo de ellos. El ingeniero español se incorporó en 2017 a un proyecto sobre StarCraft, un videojuego de estrategia al que es muy aficionado. “Hay una parte que está oculta al otro jugador [a diferencia del ajedrez] y una parte de tiempo real que lo hacen más complejo”, explica. Con todas estas dificultados, el programa AlphaStar derrotó en 2019 a dos profesionales por diez partidas al cero. Pero quedan otros aún más sofisticados, “los de mundo abierto, como el Minecraft, sin objetivo final ni reglas estrictas, que requieren una enorme creatividad”.

¿Qué cualidades humanas deben perfeccionar las máquinas para ganarnos en juegos en los que aún no nos ha derrotado? La capacidad de generalizar, por ejemplo: para el ser humano es fácil aprender el juego 101 si ya ha participado en 100 similares. También la impredecibilidad o la habilidad para detectar los sesgos de sus rivales. “Cuando Lee Seedol jugó contra AlphaGo se iba adaptando a la máquina a medida que transcurrían las partidas. Pero para AlphaGo era como jugar contra personas distintas, no captaba su estilo de juego”, cuenta Vinyals.

Algunas de esas cualidades psicológicas, como lanzar faroles o, a su manera, poner cara de póquer volviéndose impredecible,?las desarrolló por sí mismo el programa Pluribus, creado por un equipo de investigadores de la Universidad Carnegie Mellon en colaboración con Facebook (ahora Meta). En julio de 2019 la revista Science publicó que este sistema había derrotado a cinco campeones de póker. Sus creadores no le inculcaron ninguna de estas cualidades, simplemente le enseñaron lo básico para que jugara solo: al principio de manera aleatoria, luego repitiendo con más frecuencia las tácticas que más dinero podrían proporcionarle.

La utilidad de este tipo de autoaprendizaje es que puede generalizarse más fácilmente para resolver otros problemas del mundo real. Su objetivo era desarrollar un algoritmo genérico para afrontar el problema de la información oculta que se da en numerosos campos. A largo plazo, esta investigación podría utilizarse para aplicaciones tan amplias como la navegación de vehículos autónomos o la negociación autónoma de los precios de los billetes de avión en nombre de los usuarios.

Pese a que la máquina haya vencido también en juegos tan complejos, el ser humano conserva algunas ventajas. “Nuestro sistema es un superhombre en póquer porque fue capaz de jugar billones de manos contra sí mismo. Pero una persona aprende a jugar bastante bien después de unas miles de partidas. La capacidad de los humanos para adaptarse tan rápido es algo que la inteligencia artificial aún lucha por conseguir”, concluye.

Dos grandes figuras de la ciencia ficción tenían visiones diferentes de hacia dónde nos conduce este imparable progreso. Arthur C. Clarke creía que si conseguimos inventar máquinas pensantes será lo último que inventemos. Isaac Asimov esperaba que llegaran esas máquinas para salvarnos de nosotros mismos. “Deberíamos pensar cómo organizarnos para que el progreso social y cultural evolucionen a una velocidad compatible con la velocidad de la tecnología. Podemos llegar a un punto en el que no entendamos qué hacen las máquinas que controlan parte de nuestra vida”, reflexiona Barbieri. Frabetti coincide la visión más optimista de Clarke: “Si las máquinas son inteligentes, aunque para entonces ya no podremos seguir llamándolas máquinas, es razonable pensar que establecerán una relación cordial con sus constructores y nos ayudarán a resolver problemas que no hemos resuelto. Y creo que llegaremos a verlo”.

¿Encontraste un error?

Reportar

Temas relacionados

inteligencia artificial

Te puede interesar