¿Cómo luce un milímetro cubíco de cerebro? Google y Harvard hicieron una reconstrucción nanométrica

El fragmento, con un tamaño similar a medio grano de arroz, contiene 57.000 células, 230 milímetros de vasos sanguíneos y 150 millones de sinapsis, detalla el estudio.

Compartir esta noticia
Cerebro.jpg
El cerebro.
Imagen: Deviant Art.

El Tiempo/GDA
Investigadores de la Universidad de Harvard y de Google crearon la mayor reconstrucción en 3D con resolución sináptica y nanométrica de un fragmento de cerebro humano hasta la fecha.

En la reconstrucción, se muestra con gran detalle cada célula y su red de conexiones neuronales en un fragmento de corteza temporal humana donada que mide aproximadamente como medio grano de arroz.

El logro, publicado en el último número de Science, es el último dentro de una colaboración de casi 10 años con científicos de Google Research. El equipo combina las imágenes de microscopía electrónica del neurocientífico Jeff Lichtman con algoritmos de inteligencia artificial (IA) para codificar por colores y reconstruir el complejísimo cableado del cerebro de los mamíferos.

La finalidad de esta colaboración, financiada por la Iniciativa BRAIN de los Institutos Nacionales de la Salud de EE.UU., es crear un mapa de alta resolución del cableado neuronal de todo el cerebro de un ratón. Esto supondría unas 1.000 veces la cantidad de datos que acaban de producir a partir del fragmento de corteza humana de un milímetro cúbico.

Así luce un milímetro cúbico de cerebro humano con resolución nanométrica
Así luce un milímetro cúbico de cerebro humano con resolución nanométrica
Foto: Google Research & Lichtman Lab (Harvard) / Renderizaciones D. Berger (Harvard)

“La palabra ‘fragmento’ resulta irónica”, dice Lichtman, catedrático Jeremy R. Knowles de Biología Molecular y Celular y decano de Ciencias de Harvard. “Para la mayoría de la gente un terabyte es gigantesco, pero ese minúsculo trocito contiene 57.000 células, 230 milímetros de vasos sanguíneos y 150 millones de sinapsis, todo lo cual equivale a 1.400 terabytes de datos”.

Según comenta Lichtman a SINC por correo electrónico, “el objetivo de este trabajo es representar los detalles de la arquitectura del cerebro humano con una resolución suficiente para ver todas y cada una de las conexiones sinápticas entre células nerviosas”.

En esencia, añade, “se trata de un reto de ingeniería que requiere la tinción del cerebro con metales pesados (osmio, plomo y uranio), el seccionamiento ultrafino del cerebro (con un ultramicrotomo automatizado con cuchilla de diamante), la obtención de imágenes a gran velocidad con un microscopio electrónico de barrido multihaz y una serie de métodos informáticos para unir, alinear, segmentar y anotar los datos de las imágenes”.

El líder del estudio destaca: “Muchos de estos pasos computacionales requerían aprendizaje automático e inteligencia artificial. Nuestro equipo de Harvard y el de Google hemos trabajado duro durante varios años para conseguirlo”.

Detalles nunca vistos de la estructura cerebral

El nuevo mapa contiene detalles nunca vistos de la estructura cerebral, incluido un raro pero potente conjunto de axones conectados por hasta 50 sinapsis. El equipo también observó rarezas en el tejido, como un pequeño número de axones que formaban extensos verticilos. Dado que la muestra procedía de un paciente con epilepsia, los investigadores no están seguros de si estas formaciones inusuales son patológicas o simplemente raras.

El campo de Lichtman es la conectómica, que, de forma análoga a la genómica, pretende crear catálogos completos de la estructura cerebral, hasta las células individuales y el cableado. Estos mapas completos abrirían el camino a nuevos conocimientos sobre la función y las enfermedades cerebrales, de las que los científicos aún saben muy poco.

Los algoritmos de IA de última generación de Google han permitido reconstruir y cartografiar el tejido cerebral en tres dimensiones. Los autores también han desarrollado un conjunto de herramientas de acceso público que otros científicos podrán utilizar para examinar y anotar el conectoma.

Una sola neurona (blanca) con 5.600 axones (azules) que se conectan a ella. Las sinapsis de estas conexiones se muestran en verde. El núcleo central de la neurona mide unos 14 micrómetros.
Una sola neurona (blanca) con 5.600 axones (azules) que se conectan a ella. Las sinapsis de estas conexiones se muestran en verde. El núcleo central de la neurona mide unos 14 micrómetros.
Foto: Google Research & Lichtman Lab (Harvard) / Renderizaciones D. Berger (Harvard)

“Dada la enorme inversión realizada –que no desvela– en este proyecto era importante presentar los resultados en abierto, de forma que cualquier persona pueda beneficiarse de ellos”, afirma Viren Jain, investigador de Google Research y coautor del trabajo.

En este sentido, Lichtman subraya que “el conjunto de datos es tan grande que sería imposible que un solo laboratorio lo estudie en su totalidad. Es más factible que se hagan descubrimientos relevantes si todas las partes interesadas tienen acceso a esa información”.

Por otro lado, el neurocientífico dice a SINC que en la reconstrucción presentada ahora han aprendido que “el cerebro humano, como entidad física, es mucho más compleja que los pensamientos que produce. Esto significa que comprender nuestro cerebro mediante el pensamiento será todo un reto”.

También –resalta– “hemos encontrado muchas cosas bellas y extrañas en esta gran muestra que resultan inesperadas y, en muchos casos, bastante misteriosas, algunas de ellas las hemos destacado en el estudio y otras se podrán encontrar en la galería de la página alojada por Google sobre el trabajo”.

A la pregunta de cómo puede contribuir esta reconstrucción detallada a una mejor comprensión de los trastornos cerebrales y al desarrollo de nuevas terapias, el neurocientífico indica: “La esperanza última es que las enfermedades psiquiátricas y del desarrollo del cerebro tengan una patología física subyacente y que nuestro estudio ayude a los investigadores a describir mejor lo que falla en el interior del cerebro para causar el pensamiento desordenado en las personas afectadas”.

El siguiente paso de la investigación será abordar la formación del hipocampo del ratón, importante para la neurociencia por su papel en la memoria y las enfermedades neurológicas.

¿Encontraste un error?

Reportar

Temas relacionados

GDA

Te puede interesar